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Plan of talk

• Introduction

• Two-photon double ionization of the Li

• Electron-impact ionization of Na and Mg

• Summary

• Future plans
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Introduction

• Time-dependent close-coupling (TDCC) method.

• Full-dimensionality numerical integration of the
two/three-electron time-dependent Schrödinger equation.

• Applicable to a range of collision processes (photon,
electron or ion impact).

• Accurate over a wide range of impact energies.
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Two-photon double ionization of lithium
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Motivation

• Provides guidance and support for recent measurements
made at FLASH (Schuricke/Dorn).

• Such comparison requires accurate resolution of angular
degrees of freedom and electron momenta.

• Provide first angular-resolved calculations for two-photon
double ionization of Li.

• Application of TDCC codes to treatment of more than two
photon absorptions (above-threshold ionization).
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FLASH experiments

• COLTRIMS (Cold Target Recoil Ion Momentum
Spectroscopy) - Separate collection of ions and electrons.

• Measured time of flight and position of ions/electrons allow
momenta to be determined.
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FLASH experiments

• Two-photon double ionization of Li at 50 eV (direct) and 59
eV (intermediate excitation of the 1s2s2p state).

• Li (1s22s) + n~ω → Li2+(1s) + 2e− .
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Theory
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Time-dependent close-coupling method

• Full-dimensionality solution of the two-electron TDSE:

i
∂

∂t
Ψ(r1, r2, t) = HΨ(r1, r2, t).

• Finite-difference/basis-set expansion for each spin state:

ΨS(r1, r2, t) =
∑
l1,l2,L

PLSl1l2(r1, r2, t)

r1r2
|l1l2L〉.

• Two active electrons move in the field of a frozen 1s Li2+

orbital.
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TDCC method

• Angular reduction of the two-electron time-dependent
Schrödinger equation yields

i
∂

∂t
PLSl1l2(r1, r2, t) = Tl1l2P

LS
l1l2(r1, r2, t)

+
∑
l′1,l
′
2

V L
l1l2,l′1l

′
2
PLSl′1l′2

(r1, r2, t)

+
∑
l′1,l
′
2,L
′

WL,L′

l1l2,l′1l
′
2
PL
′S

l′1l
′
2

(r1, r2, t).

• Initial state obtained through relaxation of the field-free
time-dependent Schrödinger equation in imaginary time.
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Double ionization of lithium at 50 eV
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Experimental considerations

• FLASH laser pulse length ∼ 10 fs.

• Pulses display chaotic behaviour.

• Laser intensity will vary strongly over time.

• Intensity range: 5× 1013 ≤ I ≤ 5× 1015 (W/cm2).
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Triple-differential cross sections
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Triple-differential cross sections

• Momentum-space wavefunction, PLSl1l2(k1,k2), obtained via
projection of position-space wavefunction onto product of
Li2+ continuum orbitals at the end of the laser pulse.

• Appropriate integration of momentum-space wavefunction
over all momenta yields the TDCS:

d3σ

dE1dΩ1dΩ2
=

1

k1k2

(ω
I

)N 1

Teff

∫ ∞
0

dk1

∫ ∞
0

dk2 δ

[
α− tan−1

(
k2

k1

)]

×
∑
S

wS

∣∣∣∣∣∣
∑
l1,l2,L

(−i)l1+l2ei(σl1+σl2 )PLSl1l2(k1, k2)|l1l2L〉

∣∣∣∣∣∣
2

.



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

UNCLASSIFIED 

UNCLASSIFIED   

Triple-differential cross sections

• Momentum-space wavefunction, PLSl1l2(k1,k2), obtained via
projection of position-space wavefunction onto product of
Li2+ continuum orbitals at the end of the laser pulse.

• Appropriate integration of momentum-space wavefunction
over all momenta yields the TDCS:

d3σ

dE1dΩ1dΩ2
=

1

k1k2

(ω
I

)N 1

Teff

∫ ∞
0

dk1

∫ ∞
0

dk2 δ

[
α− tan−1

(
k2

k1

)]

×
∑
S

wS

∣∣∣∣∣∣
∑
l1,l2,L

(−i)l1+l2ei(σl1+σl2 )PLSl1l2(k1, k2)|l1l2L〉

∣∣∣∣∣∣
2

.



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

UNCLASSIFIED 

UNCLASSIFIED   

Triple-differential cross sections

• Energy of outgoing electron pair may be partitioned
arbitrarily for a given total excess energy.

• Coplanar detection geometry (φ1 = φ2 = 0◦) used to
reduce angular variables from four to two.

• Polar angle of one electron is fixed, the other varied
(relative to the laser polarization axis).
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Triple-differential cross sections
1s2s 1S initial state, equal energy sharing

ω = 50 eV, I = 5× 1014 Wcm−2
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• Anti-parallel emission also dominant for θ1 = 0◦, 30◦ and
θ1 = 150◦, with additional near-perpendicular emissions.
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Triple-differential cross sections
1s2s 1S initial state, equal energy sharing

ω = 50 eV, I = 5× 1014 Wcm−2
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• Near-perpendicular emission dominant for θ1 = 60◦ and
θ1 = 120◦.
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Triple-differential cross sections
1s2s 1S initial state, equal energy sharing

ω = 50 eV, I = 5× 1014 Wcm−2
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• Emission at a mutual angle θ12 = 120◦ dominates for
θ1 = 90◦.
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Triple-differential cross sections
1s2s 3S initial state, equal energy sharing

ω = 50 eV, I = 5× 1014 Wcm−2
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• Anti-parallel emission avoided for all values of θ1.



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

UNCLASSIFIED 

UNCLASSIFIED   

Triple-differential cross sections
1s2s 3S initial state, equal energy sharing

ω = 50 eV, I = 5× 1014 Wcm−2
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• Dominant emission at θ12 ' 120◦ at all angles.
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Triple-differential cross sections
1s2s 3S initial state, equal energy sharing

ω = 50 eV, I = 5× 1014 Wcm−2
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• Two such contributions for θ1 = 0◦ and θ1 = 90◦.
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Recoil-ion momentum distributions
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Recoil-ion momentum distributions

• Recoil-ion momentum vector given in terms of electron
momenta:

p = − (k1 + k2) .

• Momentum distribution obtained via integration of TDCS
over appropriate set of angles and energies

d3σ

dpxdpydpz
=

∫
dΩ′1

∫
dΩ′2

∫
dE1

d3σ

dΩ1dΩ2dE1
δ (p + k1 + k2) .

• Integration over all py gives distribution over px and pz.
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Recoil-ion momentum distributions
Singlet and triplet combined

I = 5× 1014 Wcm−2

• Features at larger momenta (|px, pz| > 2) indicate
three-photon double ionization.
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Recoil-ion momentum distributions
Singlet and triplet combined

I = 1× 1015 Wcm−2

• Increase in magnitude of peak features associated with
three-photon double ionization.
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Recoil-ion momentum distributions
Singlet and triplet combined

I = 5× 1015 Wcm−2

• Increase in central features (pz ' 0) associated with
anti-parallel emission.
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Comparison with experiment
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Comparison with experiment

TDCC
I = 1× 1015 Wcm−2

Experiment
(Schuricke/Dorn)
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Singlet and triplet contributions
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Two photon absorptions
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Singlet contribution
Two photon absorptions
I = 1× 1015 Wcm−2

• Prominent central features due to anti-parallel emission.
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Triplet contribution
Two photon absorptions
I = 1× 1015 Wcm−2

• Central minimum - anti-parallel emission largely avoided.
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Double ionization of lithium at 59 eV
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Double ionization of lithium at 59 eV

• A minimum of two photons required for double ionization
from an initial ground state.

• Double ionization proceeds via initial photoexcitation of the
1s2s2p 2PM=0 state.

• A single 59 eV photon is sufficient to ionize the 2s and 2p
electrons.

• TDCC calculations model photoionization of 2s2p 1,3PM=0

two-electron states.
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Triple-differential cross sections
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Triple-differential cross sections
2s2p 1P initial state, equal energy sharings

ω = 59 eV, I = 5× 1014 Wcm−2
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• Dominant anti-parallel emission for θ1 = 0◦ with additional
near-perpendicular components.
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Triple-differential cross sections
2s2p 1P initial state, equal energy sharings

ω = 59 eV, I = 5× 1014 Wcm−2
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• Anti-parallel emission no longer dominant for θ1 = 30◦ and
θ1 = 150◦.
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Triple-differential cross sections
2s2p 1P initial state, equal energy sharings

ω = 59 eV, I = 5× 1014 Wcm−2
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• Near-perpendicular emission dominant for θ1 = 60◦ and
θ1 = 120◦.
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Triple-differential cross sections
2s2p 1P initial state, equal energy sharings

ω = 59 eV, I = 5× 1014 Wcm−2

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

T
D

C
S

 (
b
/s

r2
e
V

)

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

(a) (b) (c)

(d) (e) (f)

• Two peaks for θ1 = 90◦ at θ2 = θ1 ± 120◦ with additional
near-anti-parallel components.
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Triple-differential cross sections
2s2p 3P initial state, equal energy sharings

ω = 59 eV, I = 5× 1014 Wcm−2
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• Anti-parallel emission avoided for all values of θ1.
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Triple-differential cross sections
2s2p 3P initial state, equal energy sharings

ω = 59 eV, I = 5× 1014 Wcm−2
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• Dominant emission at θ12 ' 130◦ at all values of θ1.



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

UNCLASSIFIED 

UNCLASSIFIED   

Triple-differential cross sections
2s2p 3P initial state, equal energy sharings

ω = 59 eV, I = 5× 1014 Wcm−2
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• Two such contributions for θ1 = 0◦ and θ1 = 90◦.
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Recoil-ion momentum distributions
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Comparison with experiment

• Reasonable agreement in lobe structure positions and
relative magnitudes.
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Singlet and triplet contributions

• Peaks at pz > 1 in the singlet contribution indicate
preference for emission into a common hemisphere.
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Singlet and triplet contributions

• Singlet contribution again shows central features due to
anti-parallel emission.
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Singlet and triplet contributions

• No such features in the triplet contribution since
anti-parallel emission is largely avoided.
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Summary

• First set of calculations for two- and three-photon double
ionization of Li.

• Each spin state shows highly characteristic emission
configurations.

• Intermediate photoexcitation has a considerable effect on
emission configurations.

• Recoil-ion momentum distributions are in good agreement
with FLASH measurements.
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Electron-impact ionization of Na and Mg
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Theory
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TDCC method
• Angular reduction of the two-electron time-dependent

Schrödinger equation yields

i
∂

∂t
PLSl1l2(r1, r2, t) = Tl1l2P

LS
l1l2(r1, r2, t)

+
∑
l′1,l
′
2

V L
l1l2,l′1l

′
2
PLSl′1l′2

(r1, r2, t).

• Initial state is a spin-symmetrized product of an incoming
electron wavepacket and a valence-shell radial orbital:

PLSl1l2(r1, r2, t = 0) =√
1

2

[
Gk0l1(r1)Pnl2(r2) + (−1)SPnl1(r1)Gk0l2(r2)

]
.
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The challenge of multi-electron atoms
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The challenge of multi-electron atoms

• Accurate description of inactive multi-electron core and its
interaction with active electrons required.

• Higher angular momentum channels must be retained in
the wavefunction for a more diffuse atomic system.

• Variable radial mesh required to track rapid oscillations of
the radial wavefunction near the nucleus.

• Retain efficiency and accuracy using an appropriate time
propagation scheme.
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Triple-differential cross sections for
electron-impact ionization of Na
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Manchester experiments

• Detection carried out in coplanar (φ1 = φ2 = 0◦) symmetric
(ξ1 = ξ2) or asymmetric geometries.
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Triple-differential cross sections
coplanar symmetric geometry, equal energy sharing
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• Good agreement obtained with experiment in each case; calculations
are able to track TDCS features spanning several orders of magnitude.
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Triple-differential cross sections
coplanar asymmetric geometry, equal energy sharing, Einc = 11.15 eV
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• Wannier breakup geometry dominates for θ1 = 0◦, 150◦.
• Overall preference for θ1 = 30◦.
• Similar trends were observed in previous CCC calculations.
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Triple-differential cross sections
for electron-impact ionization of Mg
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Triple-differential cross sections
coplanar symmetric geometry, equal energy sharing
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• Calculations are able to track TDCS features which range over several
orders of magnitude.
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Triple-differential cross sections
coplanar symmetric geometry, equal energy sharing
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• A more complete treatment of valence-shell correlation may be required
at 27.65 eV.
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Triple-differential cross sections
coplanar symmetric geometry, equal energy sharing
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• Sensitivity to correlation may be reduced as the 3s electron is ejected
more rapidly.
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Triple-differential cross sections
coplanar asymmetric geometry, equal energy sharing, Einc = 47.65 eV
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• Good agreement obtained with measurement at θ1 = 30◦.
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Triple-differential cross sections
coplanar asymmetric geometry, equal energy sharing, Einc = 47.65 eV
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• Strong preference for emission with θ1 = 30◦, as was the case for Na.
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Triple-differential cross sections
coplanar asymmetric geometry, equal energy sharing, Einc = 47.65 eV
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• Additional structure in comparison to the Na TDCS.
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Summary

• Applied a new version of the TDCC method to calculate
angular distributions for ionization of multi-electron targets.

• Good agreement with measurements obtained for a range
of incident electron energies for Na and Mg.

• Differing dynamics observed in the angular distributions for
He and Mg at a common excess energy.
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Future plans

• Calculate angular distributions for electron-impact single
ionization of Mg where both valence-shell electrons are
considered active.

• Examine the effect of valence-shell correlation through
comparison of two-electron and three-electron calculations.

• Calculate angular distributions for electron-impact
ionization of anistropic atomic targets and make
comparison with recent experiments.
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